Relative form boundedness and compactness for a second-order differential operator
نویسندگان
چکیده
منابع مشابه
On Fuzzy Solution for Exact Second Order Fuzzy Differential Equation
In the present paper, the analytical solution for an exact second order fuzzy initial value problem under generalized Hukuhara differentiability is obtained. First the solution of first order linear fuzzy differential equation under generalized Hukuhara differentiability is investigated using integration factor methods in two cases. The second based on the type of generalized Hukuhara different...
متن کاملInitial value problems for second order hybrid fuzzy differential equations
Usage of fuzzy differential equations (FDEs) is a natural way to model dynamical systems under possibilistic uncertainty. We consider second order hybrid fuzzy differentia
متن کاملA RESEARCH NOTE ON THE SECOND ORDER DIFFERENTIAL EQUATION
Let U(t, ) be solution of the Dirichlet problem y''+( t-q(t))y= 0 - 1 t l y(-l)= 0 = y(x), with variabIe t on (-1, x), for fixed x, which satisfies the initial condition U(-1, )=0 , (-1, )=1. In this paper, the asymptotic representation of the corresponding eigenfunctions of the eigen values has been investigated . Furthermore, the leading term of the asymptotic formula for ...
متن کاملGlobal Existence and Boundedness of Solutions to a Second-Order Nonlinear Differential System
متن کامل
A note on inequalities for Tsallis relative operator entropy
In this short note, we present some inequalities for relative operator entropy which are generalizations of some results obtained by Zou [Operator inequalities associated with Tsallis relative operator entropy, {em Math. Inequal. Appl.} {18} (2015), no. 2, 401--406]. Meanwhile, we also show some new lower and upper bounds for relative operator entropy and Tsallis relative o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2004
ISSN: 0377-0427
DOI: 10.1016/j.cam.2004.01.014